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The work proposes and studies a model for one-dimensional spatially extended systems, which involve
nonlocal interactions and finite propagation speed. It shows that the general reaction-diffusion equation, the
Swift-Hohenberg equation, and the general Kuramoto-Sivashinsky equation represent special cases of the
proposed model for limited spatial interaction ranges and for infinite propagation speeds. Moreover, the Swift-
Hohenberg equation is derived from a general energy functional. After a detailed validity study on the gener-
alization conditions, the three equations are extended to involve finite propagation speeds. Moreover, linear
stability studies of the extended equations reveal critical propagation speeds and unusual types of instabilities
in all three equations. In addition, an extended diffusion equation is derived and studied in some detail with
respect to finite propagation speeds. The extended model allows for the explanation of recent experimental
results on non-Fourier heat conduction in nonhomogeneous material.
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I. INTRODUCTION

The propagation of activity in spatially extended systems
has attracted much attention in the last centuries, starting
from celestial mechanics in the sixteenth century to its study
in complex physical, chemical, or biological systems �1,2� in
recent decades. In such systems the communication between
the system subunits plays a decisive role. These subunits
may be coupled locally to their next neighbors or may reveal
longer-distance connections. In the latter case, the finite
speed of interactions, i.e., the finite propagation speed, may
yield temporal delays which affect the space-time dynamics
of the system. Such effects have been found in several sys-
tems, e.g., in neural networks �3–6�, quantum devices �7�,
porous and nonhomogeneous media �8,9�, metals irradiated
by laser pulses �10�, hot plasma �11�, and electronic circuits
�12,13� like the internet or computational networks.

In order to describe spatial systems mathematically, par-
tial differential equations �PDEs� have been applied widely.
However, most PDE models neglect effects caused by finite
propagation speeds in the system. To consider these effects
in PDE models, various approaches have been followed such
as, e.g., the introduction of additional temporal derivatives
�14� or temporal constant delays �15�. However, propagation
delays depend on the distance between two locations and
thus represent space-dependent delays. In contrast to the
PDE formulation, a natural way to consider these delays is
integral-differential equations �IDEs� which sum up all activ-
ity in a spatial domain and easily consider propagation delay;
see, e.g., �16,17�. Moreover, the strong connection between
PDE and IDE models is well known �18�. The present work
proposes an IDE model involving finite propagation delays
which generalizes well-studied PDE models in one spatial
dimension, namely, the reaction-diffusion, Swift-Hohenberg,
and Kuramoto-Sivashinsky models. Moreover, re-calling the
mathematical description of neuronal populations by IDEs,
the proposed model represents a generic pattern-forming

model with a vast range of possible applications.
In addition to the generalization described above, the IDE

model allows for the extension of PDE models in order to
consider propagation delay effects. The present work shows
that the results obtained in IDE models involving finite
propagation speeds can be applied easily to PDE models.
Hence this work extends previous studies �19,20� as it
clearly distinguishes local dynamics from nonlocal spatial
interactions and elicits the strong connection between well-
known PDE models of pattern-forming systems and the IDE
models in neural field theory �21–23�. We derive extensions
of the diffusion equation, the Swift-Hohenberg equation
�SHE�, and the Kuramoto-Sivashinsky equation now involv-
ing finite propagation speeds. These extensions are important
if the speed of the propagating activity in the system ap-
proaches the propagation speed of the system. Such ultrafast
phenomena have been observed experimentally in solids
�24,25�, in plasma �11�, and on solid and fluid surfaces
�26,27�.

The present work is structured as follows. Section II in-
troduces the integral-differential equation model and elicits
its formal relation to partial differential equations. Then the
subsequent section shows the reduction procedure to the
PDE models and investigates the validity of that reduction.
Eventually Sec. IV studies the linear behavior of three spe-
cific models and examines their dependence on the finite
propagation speed, while the last section closes the work by
a brief discussion of the obtained results.

II. THE GENERAL MODEL

The present work considers the general evolution equa-
tion

T̂V�x,t� = h�V�x,t�� + �
�

dyK�x − y�f�V„y,t − ��x − y�…�

+ �
�

dyL�x − y�g�V„y,t − ��x − y�…� �1�

with the scalar field variable V�x , t� and the spatial domain*Electronic address: ahutt@uottawa.ca
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�, which is assumed being large but finite. The temporal

operator T̂= T̂�� /�t� represents the temporal linear dynamics
of an uncoupled element at spatial location x. For instance, a

damped oscillator would be modeled as T̂V=�2V /�t2

+�V /�t+V. In the following, we specify the operator by

T̂�0�=1. In addition, the self-interaction h�V�x , t�� may rep-
resent an additional nonlinear driving. Considering the pre-
vious example, the nonlinear damped oscillators may be

modeled by T̂V=V−sin�V�, i.e., h�V�=V−sin�V�. Moreover,
to extend the system by spatial coupling, K�x−y� and
L�x−y� in Eq. �1� represent the different coupling functions
between elements at spatial locations x and y, and the two
coupling functions belong to two different spatial interaction
types. For instance, in neural nets neurons may be coupled
by excitation and by inhibition, which is modeled typically
by an excitatory net and an inhibitory net with K�x−y��0
and L�x−y��0, respectively. In the next section, this distinc-
tion turns out to be very important in the context of the
Kuramoto-Sivashinsky equation. In addition, the functionals
f�V� and g�V� allow for various �nonlinear� interaction types
of the corresponding spatial interactions. Finally the propa-
gation delay ��x−y�= �x−y� /c with the propagation speed c
takes into account the finite time it takes the signal to propa-
gate from one spatial location x to another location y.

We point out that Eq. �1� is similar to previous IDE mod-
els of neuronal populations �28,29�, which can be derived
from basic properties in neural tissue �19�. In addition, it
extends the previous IDE models by considering local inter-
actions and an additional spatial interaction type and thus
renders the model more realistic for physical systems. As we
show in the subsequent section, this extension proves to be
very powerful.

Finally recall the relation of IDEs to PDEs. Some previ-
ous studies remarked that IDEs generalize PDEs �18,19� by
the identity

�
−�

�

dyK�x − y�S�V�y�� = �
n=0

�

�− 1�nKn
�nS�V�x��

�xn �2�

with a nonlinear functional S and the kernel moments Kn
=�d� K����n /n! ∀ n�N0. The expansion �2� represents an
order expansion of spatial interactions whose order n indi-
cates the spatial interaction range. Hence Kn represent the
contribution of spatial interactions of order n. Typically local
or short-range PDE models involve spatial derivatives of up
to second order, while PDE models with spatial derivatives
of up to fourth order involve nonlocal or long-range interac-
tions. The expansion �2� extends this classification to spatial
derivatives of arbitrary order.

III. REDUCTION TO SPECIFIC MODELS

This section shows that Eq. �1� generalizes reaction-
diffusion systems and the SHE and the Kuramoto-
Sivashinsky equation in one-dimensional spatial systems.
Since these equations assume an infinite propagation speed
in the system, we set ��x−y�=0.

A. Reaction-diffusion equations

First let us focus on reaction-diffusion models, which al-
low for the mathematical description of diverse spatiotempo-
ral phenomena. We mention heat propagation or phase tran-
sitions in solids �30,31�, chemical reactions in fluids �32,33�,
and pattern formation in biological systems �2,18�. Reaction-

diffusion equations are obtained from �1� by choosing T̂
=� /�t, g�V�=0, and f�V�= f1V. Further, the kernel K�x� is
symmetric, i.e., K2n+1=0, and exhibits short-ranged spatial
interactions with Kn→0 for n�2. Then the application of
Eq. �2� yields

�V�x,t�
�t

= h̄�V�x,t�� + D
�2

�x2V�x,t� �3�

with h̄�V�=h�V�+K0f1V and D=K2f1. This reaction-
diffusion equation �33� accounts for �non�linear self-

interactions represented by h̄�V� and considers local diffusive
interactions with diffusion constant D. Hence, reaction-
diffusion systems neglect spatial interactions of order n�4.

B. Swift-Hohenberg equation

In their famous work on fluctuations near the onset of
Rayleigh-Bénard convection �34,35�, Swift and Hohenberg
derived an order parameter equation for the temperature and
fluid velocity dynamics of the convection. This work has
attracted much attention in the last decades and the order
parameter equation has been interpreted as a model system
for pattern formation �33�. For instance, Lega et al. modeled
the spatiotemporal pattern formation in large aspect ratio la-
sers �36,37� by the SHE and Brazovskii �38� discussed the
SHE in the context of the condensation of liquid crystal flu-
ids. However, in spite of its broad applicability, the SHE fails
to model some experimental results �33� and several previ-
ous studies extended the equation by adding some terms
�39,40�. Hence the application of the SHE is not limited to
the original physical problem and it thus represents a generic
model for the spatiotemporal dynamics of spatially extended
systems �40�.

To gain the SHE from Eq. �1�, we choose the temporal

operator as T̂=� /�t and define h�V�=aV−bV3, g�V�=0,
f�V�= f1V, f1�0. Subsequently we obtain

�V�x,t�
�t

= h�V�x,t�� + f1�
�

dyK�x − y�V�y,t� . �4�

In addition the kernel K�x� is symmetric and exhibits longer-
ranged spatial interactions, i.e., Kn→0 for n�4. The subse-
quent application of Eq. �2� yields

�V�x,t�
�t

= aV�x,t� − bV3�x,t� + K0f1V�x,t� + K2f1
�2

�x2V�x,t�

+ K4f1
�4

�x4V�x,t� .

By choosing b=K2
2�f1� /4K4�0 and rescaling time and space

according to t→ �4K4 /K2
2�f1��t and x→	2K4 /K2x, respec-

tively, we find the SHE �33�
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�V�x,t�
�t

= �V�x,t� − V3�x,t� − 
1 +
�2

�x2�2

V�x,t� �5�

with �=4K4a /K2
2�f1�−4K4K0 /K2

2+1. Hence, systems obeying
the SHE neglect spatial interactions of order n�6.

Moreover, Eq. �5� maybe derived from an energy func-
tional F�V� by the generalized Ginzburg-Landau equation

�V

�t
= −

	F�V�
	V

. �6�

Since the present work aims to introduce nonlocal interac-
tions to physical models in a generalized way, we follow the
approach of Ginzburg and Landau and attempt to model the
spatiotemporal dynamics of spatially extended systems by a
generalized energy functional. Taking into account the spa-
tial interactions of elements in a system, the interaction en-
ergy in a spatial field between two spatial locations x and y at
time t reads K�x−y�V�x , t�V�y , t�. Here the term K�x−y�
quantifies the interaction strength between both elements
�41�. Considering local interactions h�V� and their corre-
sponding energy contributions W�V� additionally, then the
field energy is the space integral over all spatial locations and
all interactions:

F = �
�

dx W�V�x,t�� −
1

2
�

�

dx�
�

dy K�x − y�V�x,t�V�y,t�

= �
�

dx W�V�x,t�� −
1

2
V�x,t��

n=0

�

�− 1�nKn
�nV�x�

�xn

= �
�

dx W�V�x,t�� −
1

2
V�x,t�



K0 + K2
�2V�x�

�x2 + K4
�4V�x�

�x4 + ¯ � �7�

with −	W /	V=h�V� and � denoting the real axis. In the
third line, we applied the identity �2�. Then the specific
choices applied in the previous paragraph yields the well-
known energy functional of the SHE �34,35,42�

F = �
�

dx
1

4
V4�x,t�

+
1

2
�

�

dxV�x,t��− � + 
1 +
�2

�x2�2V�x,t� . �8�

Corresponding to this derivation of the SHE from general
physical considerations, we conclude that the SHE represents
a specific description of a general spatial system. This view
angle on the equation is supported by its various motivations
in physics mentioned above. In addition to the previous dis-
cussion, Eq. �7� is the Lyapunov functional of Eq. �4� as

d

dt
F = − �

�

dx
 �V�x,t�
�t

�2

� 0.

Then the question arises whether there exists an energy
functional in the case of finite propagation speeds. Corre-
sponding to the previous treatment, the first ansatz for a pos-

sible energy functional would contain the terms
K�z�V�x , t�V(x−z , t−��z�) with the distance z=x−y between
two spatial locations and the propagation delay ��z��0
taken from Eq. �1�. Then applying the identity �2� in the time
domain, we obtain

K�z�V�x,t�V„x − z,t − ��z�…

= K�z�V�x,t��
n=0

�
1

n!

−

�z�
c
�n�nV�x − z,t�

�tn .

We observe that the energy of a pair of elements at distance
z, whose interaction is delayed by the finite propagation
speed c, depends on the temporal derivatives of the elements.
Subsequently the energy functional of the system
F�V ,�V /�t , . . . � would depend on the temporal derivatives
of the field and the generalized Ginzburg-Landau equation
�6� is not applicable. Preliminary results on the different deri-
vation of Eq. �4� including propagation delays by another
variational principle seems promising. However, the discus-
sion of these results would exceed the major aim of the
present work and we refer the reader to forthcoming work.

C. Kuramoto-Sivashinsky equation

Finally we focus on the Kuramoto-Sivashinsky equation
�33,43� which allows for the study of various phenomena in
fluids and solids such as, e.g., the phase turbulence in fluids
�44�, the thermal diffusive instabilities of flame fronts �45�,
the directional solidification in alloys �46�, or the interface
instability during the application of industrial beam cutting
techniques �47�. Here, the terms in Eq. �1� are chosen as

T̂=� /�t, g�V�=g1V, f�V�= f2V2 with g1, f2�0. Now the ker-
nel K�x� is nonsymmetric and short ranged, i.e., Kn→0,
n�1, while the kernel L�x� is chosen symmetric. Hence the
corresponding kernel moments obey L2n+1=0 and L�x� de-
scribes long-range interaction with Ln→0, n�4. Then the
application of Eq. �2� leads to

�V�x,t�
�t

= �L0g1 − h0�V�x,t� + L2g1
�2

�x2V�x,t� + L4g1
�4

�x4V�x,t�

+ 2K1f2V
�V

�x

while h�V� has been chosen as h�V�=−K0f2V2−h0V, h0�0.
Finally the rescaling t→ �L4 /L2

2�g1��t and x→	L4 /L2x yields

�V�x,t�
�t

= − �V −
�2

�x2V�x,t� −
�4

�x4V�x,t� − V
�V

�x
�9�

with �= �g1�L0+h0 and the additional condition f2
=L2

	L2 /L4 /2K1�g1�. Equation �9� is called the generalized
Kuramoto-Sivashinsky equation �33� and �=0 represents the
original Kuramoto-Sivashinsky equation. Hence systems
obeying the Kuramoto-Sivashinsky equation involve sym-
metric spatial interactions up to order O��5� and nonsym-
metric spatial interactions of order O���. It is interesting to
note that this model includes both nonsymmetric and sym-
metric spatial interactions while the reaction-diffusion equa-
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tion and the Swift-Hohenberg equation involve symmetric
spatial interactions only.

D. Validity study

After the previous examinations, the question arises
which specific kernel functions may satisfy the appropriate
conditions in the three models. To this end, we apply the
Fourier transform to the nonlinear function S(V�x�) in �2�
and obtain the spatial mode expansion

�
−�

�

dy K�x − y�S„V�y,t�… = �
−�

�

dk S̃�k,t�eikx�
n=0

�

fn�k�

�10�

with the sequence fn�k�= �−ik�nKn. In the following, we ab-
breviate fn= fn�k� for convenience. As we will see later, fn�k�
represents the contribution of interactions at order n to the
spatial modes of the system.

To obtain convergence of the series expansion in �2�, the
ratio of subsequent sequence terms �fn� has to be smaller than
unity. This means this condition reads �fn+2� / �fn��1 for n
even and �fn+1� / �fn��1 for all n for symmetric and nonsym-
metric kernels, respectively.

To be more specific let us focus on a specific symmetric
kernel function. Since the kernel represents the probability
density function of the spatial interactions between two lo-
cations, the central limit theorem supports the choice of the
Gauss function K�x�=exp�−x2 /2�2� /	2�� with the spatial
range constant �. Then the previous convergence condition
leads to �2� �n+2� /k2, n=2,4 ,6 , . . .. If there is a maximum

spatial frequency �km�, i.e., the Fourier transform S̃��k�� is
negligible for �k�� �km�, then the spatial interaction range � is
limited from above by 	n+2/ �km�. Subsequently, the
spatial interaction range � is delimited to the interval
0��2�1/km

2 which guarantees the Taylor expansion con-
vergence in �2�. We point out that the limitation to spatial
modes is present in various physical systems. For instance,
spatial systems near a phase transition exhibit a hierarchy of
time scales of spatial modes with corresponding prominent
spatial frequencies. In this case the time evolution of the

Fourier transforms S̃�k , t� at spatial frequencies far from the
prominent ones are negligible and the prominent frequencies
define the maximum spatial frequency �km�. However, if there
is no maximum spatial frequency, i.e., �km�→�, it is �→0
and the convergence condition yields K�x�→	�x�. Hence for
an unlimited range of spatial frequencies, the expansion �2�
is valid for local interactions only and Kn→0 for n�0.

Now let us interpret the latter results. It turns out that the
convergence condition for Gaussian kernels leads to the de-
pendence of the maximum spatial range on the interaction
order n. For instance if the expansion in Eq. �2� approxi-
mates local interactions but no higher orders of nonlocality
�cf. the previous discussion of the reaction-diffusion equa-
tion�, it is �Kn+2 /Kn�1 for n=2,4 , . . . and, subsequently,
�2� �2+2� /k2=4/k2. Hence, a maximum spatial frequency
�km� yields the validity condition 0��2�4/km

2 . In case of
spatial interactions at higher orders of nonlocality �cf. the

previous discussion of the Swift-Hohenberg and Kuramoto-
Sivashinsky equations�, it is �Kn+2 /Kn�1 for n=4,6 , . . ..
This means that the validity condition now reads
0��2� �4+2� /km

2 =6/km
2 . Thus the spatial interaction range

� may be larger than in the diffusion model.
Since the Kuramoto-Sivashinsky equation involves non-

symmetric interactions, let us also examine briefly the kernel
function K�x�=	�x−x0� with the nonsymmetric shift x0�0.
We find Kn=x0

n /n! and the convergence condition reads
x0� �n+1� / �km�. Subsequently, the Kuramoto-Sivashinsky
equation is an approximation of �1� if x0�2/ �km� and if a
maximum spatial frequency exists.

IV. LINEAR ANALYSIS

Now let us examine the stationary state and its linear be-
havior for a finite propagation speed c. In case of the station-
ary state V�x , t�=V0, Eq. �1� recasts to

T�0�V0 = h�V0� + �Kf�V0� + �Lg�V0� ,

�K = �
−�

�

K�x�dx, �L = �
−�

�

L�x�dx �11�

with �K=�K�x�dx, �L=�L�x�dx. Considering linear devia-
tions u�x , t�=V�x , t�−V0�e�t+ikx, Eq. �1� reads

T��� = sh + �
−�

�

dz M�z�e−��z�/ce−ikz �12�

with M�z�=sfK�z�+sgL�z� and sh=	h /	V, sf =	f /	V, sg

=	g /	V computed at V=V0, while 	 /	V denotes the func-
tional derivative. In the following, the propagation delay c is
assumed large but finite and the approximation
exp�−��z� /c��1−��z� /c+�2��z� /c�2 holds. For the character-
istic spatial scale of the system �, we introduce the charac-
teristic propagation delay �=� /c which represents the delay
time caused by the finite propagation speed. Thus the previ-
ous approximation holds for small propagation delays
�1/�. Subsequently expanding the exponential exp�−ikz�
into a power series we obtain

T��� +
�

c
�
n=0

�

�− ik�nPn −
�2

c2 �
n=0

�

�− ik�nQn = sh + �
n=0

�

�− ik�nMn

�13�

with the kernel moments Mn defined previously and Pn
=��dz M�z��z�zn /n!, Qn=��dz M�z��z�2zn /n!. Preliminary
computations of Mn, Pn, and Qn for Gaussian kernels yield
Mn�O��n�, Pn�O��n+1�, and Qn�O��n+2�

Equation �13� defines the stability condition for general
spatial interactions and short propagation delays. Additional
more detailed studies show that large propagation speeds c
with 1/c2�0 and vanishing odd kernel moments M2n+1=0,
P2n+1=, Q2n+1=0 lead to real Lyapunov exponents and thus
may yield stationary bifurcations. In contrast oscillatory bi-
furcations may emerge for nonvanishing odd moments only.
By recalling the definitions of these moments, we find that
symmetric and nonsymmetric spatial interactions may yield
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stationary and nonstationary bifurcations, respectively. In
case of smaller propagation speeds 1/c2�0, this classifica-
tion no longer holds and oscillatory bifurcations may occur
for both symmetric and nonsymmetric kernels.

A. The reaction-diffusion equation

To illustrate the latter results, first let us study a specific
reaction-diffusion equation, namely, the homogeneous diffu-
sion equation also known as Fick’s second law. According to
the previous discussion, Eq. �3� represents the diffusion

equation with h̄=0 yielding h�V�=−f1V. Further, Eq. �11�
yields the stationary solution V0=0 and the parameters
sf = f1, sh=−f1, while the spatial interactions are given by
K�z��0 and L�z�=0, i.e., M�z�= f1K�z�.

According to the previous discussion of �10�, Eq. �2� rep-
resents a spatial mode expansion in orders of the character-
istic spatial scale �. That is, in the case of the diffusion
equation, the order expansion is truncated at O��3� yielding
M0= f1�O�1�, M2= f1�2 /2�O��2� while all odd and higher
kernel moments M2n vanish with n�2. Further, we find P0
= f1

	2� /	�, P1=0, P2= f1
	2�3 /	� with Pn�0 ∀ n�3

and Q0= f1�2, Qn�0 ∀ n�0. Here it is f1=2D�2 and D
represents the diffusion constant. Subsequently, in the case of
c→� Eq. �13� yields ��k��−Dk2, which is the well-known
dispersion relation of the diffusion equation. Figure 1 com-
pares � and �RD and the corresponding resulting field activity
for two values of �. We observe that the IDE model is a good
approximation to the diffusion equation for �=0.1, while the
approximation is much worse for �=2. This finding confirms
our previous results on the convergence condition. Here the
maximum value of �k� is 2 /� according to the convergence

condition ��2/k derived in the previous paragraphs.
Now let us turn to finite propagation speeds c��. Con-

sidering the corresponding orders of Mn, Pn, and Qn, Eq.
�13� reads

� +
�

c
�P0 − P2k2� −

�2

c2 Q0 = sh + M0 − M2k2. �14�

For small propagation delays ����2→0 we find the
Lyapunov exponent

�RD�k� =
− Dk2

1 + ���1 − �2k2�
�15�

with �= f1
	2/�. By virtue of the wave number limit

�k��2/�, there is a critical propagation delay �th=1/3� and
a corresponding critical propagation speed cth=3��. Then
small delays ���th retain the field stability, while large de-
lays ���th yield linear unstable modes k with �RD�k��0.
Figure 2 shows the corresponding stability diagram of the
system.

Moreover, Eq. �15� may be interpreted as if it originates
from the modified diffusion equation

�u�x,t�
�t

+
��

c

1 + �2 �2

�x2� �u�x,t�
�t

= D
�2u�x,t�

�x2 . �16�

This equation is an extension of the standard diffusion equa-
tion considering finite propagation speeds. It applies in me-
dia whose propagation delay on the typical length scale of
the system is not negligible and, for instance, which show
delayed spread of space-time activity. We mention results
from fast hot pulses in plasma �11�, whose investigation in-
dicates nonlocal effects in the reaction-diffusion mechanism.
Moreover, there is the debate on the non-Fourier heat con-
duction in nonhomogeneous materials which show such de-
layed temporal activity at measurement points �8,9,48�. In
order to compare our model to the results found in experi-
ments �9�, Fig. 3 shows the temporal activity at a spatial
point. We observe a prominent delay of the activity at large
delays, while �→0 yields the Fourier case. This finding is
irrespective of the spatial location used and coincides quali-
tatively to experimental findings. Moreover, the derived
model �16� contrasts with the Cattaneo equation �14,49�,
which represents a telegraphic equation and extends the para-
bolic diffusion equation to a hyperbolic partial differential
equation by an additional second temporal derivative and

FIG. 1. �Color online� The field of the diffusion equation and the
Lyapunov exponent for different spatial ranges �. The dashed lines
represent the results from the diffusion PDE, while the solid lines
denote the results from the IDE model. In case of �=0.1, the re-
constructed field u�x , t� obtained from the IDE cannot be distin-
guished from the field of the original diffusion equation. In addition
the colors in the left panel denote subsequent times t=0 �black, very
thick line�, 3 �red, thick line�, and 6 �green, thin line�. That is, the
field u�x , t� flattens at increasing time.

FIG. 2. Illustrated stability diagram of the extended diffusion
equation. The vertical axis k=1 represents the asymptote of the
instability regime.
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thus involves finite propagation speed. Originally the Catta-
neo extension was proposed according to heuristic arguments
while our model is derived from the explicit treatment of
propagation delay.

Finally, let us briefly focus on the case of larger propaga-
tion delays ����3→0 yielding the implicit equation
−�2�22D /�2+��1+�D��1−�2k2��−Dk2=0. Simple calculus
reveals Re����0 for some k, and larger delays destabilize
the field similarly to the previous case of small delays.

B. The Swift-Hohenberg equation

Now let us turn to the Swift-Hohenberg model which in-
volves long-range spatial interactions. It has been studied as
a generic model for spatial pattern formation in various
physical systems �36,38,40�. By virtue of its broad applica-
bility, this section aims to extend it by finite propagation
delay effects. The stationary state is given by Eq. �11� and
we find one or three solutions. The single solution V0=0
leads to the parameters sf =−�f1� and sh=a. Further the spatial
interactions are given by K�z��0 and L�z�=0 yielding
M�z�=−�f1�K�z�.

According to the discussions in Sec. III D, Eq. �2� breaks
off at order O��5� and we obtain the expansion terms

M0 = − �f1�, M2 = − �f1��2/2, M4 = − �f1��4/8,

P0 = − �f1�	 2

�
�, P2 = − �f1�	 2

�
�3, P4 = − �f1�

	2

3	�
�5,

Q0 = − �f1��2, Q2 = − �f1�
3

2
�4,

while all odd and higher terms Mn, Pn, Qn vanish. Subse-
quently Eq. �13� yields for c→�

�� =
�f1�
2

�� − 1 + 2l2 − l4�

with the scaled wave number l=�k /	2 and � taken from
Sec. III B. Here �� represents the Lyapunov exponent of the
linearized original Swift-Hohenberg equation �5� and thus
defines the linear stability of the underlying spatial system.
To be more detailed, for ��0 the system is linearly stable
with ���0 for all l, while ��0 yields ���0 for
1−	�� l�1+	�. In other words, a Turing instability

emerges for ��0 at scaled wave numbers �l��1.
Now let us turn to the case c��. For small propagation

delays ����2→0 we find

�SH =
��

1 − ��1 − 2l2 + 4l4/3��
�17�

with �= �f1�	2/�. Here �SH represents the Lyapunov expo-
nent of the Swift-Hohenberg equation subject to large propa-
gation speeds. It is important to mention that the validity
criteria 0��2�6/km

2 derived in Sec. III D delimits the
scaled wave number to −	3� l�	3. Taking into account
this constraint, closer examinations of Eq. �17� reveal the
critical propagation delay �th=1/7� and the corresponding
critical propagation speed cth=7��. For ���th, the denomi-
nator of �SH is positive for all valid wave numbers and thus
�� defines the stability of the system. Hence the propagation
delay does not affect the stability of the system.

In contrast, large propagation delays ���th yield a nega-
tive denominator for a half band of wave numbers �l�� lth
and thus change the sign of the Lyapunov exponent. Here the
critical wave number lth represents the root of the denomina-
tor in Eq. �17�. Figure 4 shows the stability diagram of Eq.
�17�. We observe the unstable half band for ���th for all �,
while ��1/���th yields an additional unstable band of
wave numbers around l=0. For ��0 the stable band of spa-
tial modes vanishes for large propagation delays ��4/� and
the system is totally destabilized, while for ��0 increased
propagation delays stabilize the band of unstable Turing
modes. This stabilization by propagation delays represents an

FIG. 3. Temporal activity of the modified diffusion equation at
spatial location x=8 for two different propagation delays, i.e.,
propagation speeds. The solutions are computed analytically with
initial condition u�x , t=0�=exp�−x2 /2
0.82� /	2�0.82.

FIG. 4. Illustrated stability diagram of the extended Swift-
Hohenberg equation involving propagation delays. For ��0 �top
panel� the underlying system is stable for ��1/��1−2l2+4l4 /3�
and unstable otherwise. For ��0 �bottom panel� the stability is the
same as for ��0 apart from the wave number band �−�1��+,
�±= ±	�. For short delays ��1/��1−2l2+4l4 /3� the underlying
system is linearly unstable in this wave number band, while the
modes in this band are stable otherwise. In both the latter cases
���th guarantees the linear stability of the underlying system.
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unusual effect near Turing instabilities. In addition, recall
that the previous treatment around lth reflects ���→� and
thus conflicts with the previous assumption ����2�0. Se-
quentially higher polynomial orders in � are necessary for
closer examination.

Finally Eq. �17� may be interpreted as if it originates from
the extended Swift-Hohenberg equation

�V�x,t�
�t

−
��

c

1 + 2

�2

�x2 +
4

3

�4

�x4� �V�x,t�
�t

= �V�x,t� − V3�x,t� − 
1 +
�2

�x2�2

V�x,t� �18�

with the rescaled time t→2t / �f1�. This equation represents an
extension of the well-known Swift-Hohenberg equation in-
volving a finite propagation speed. In the case of infinite
propagation speed c→� the additional second term on the
left-hand side of Eq. �18� vanishes and the original model
equation is regained. Further, the finite propagation speed
leads to the coupling term between spatial and temporal de-
rivatives in Eq. �18� reflecting the space-dependent delay in
Eq. �1�.

C. The Kuramoto-Sivashinsky equation

Finally let us investigate the Kuramoto-Sivashinsky equa-
tion by following the same steps as in the previous examples.
Now Eq. �13� reads for small propagation delays ����2�0

� +
�

c
�P0 − k2P2� = sh + M0 − ikM1 − k2M2 + k4Q2

with M0=sf +sg, M1=sfx0, M2=sg�2 /2, M4=sg�4 /8, P0
=sfx0+sg

	2� /	�, P2=sg
	2�3 /	�, and Mn , Pm→0 for

n�4, m�2. The stationary solution is taken from �11� and
reads V0=0 yielding sf =0, sg=g1, and the Lyapunov expo-
nent

�KS =
− � + l2 − l4

1 − ���1 − 4l2�
�19�

with �= �g1�	2/�, l=�k /2, and �KS=� /2�g1�. We point out
that the rescalings k→ l and �→�KS are identical to the res-
calings of space and time in Sec. III C.

Now let us examine �19� in some more detail. For a van-
ishing propagation delay �=0�KS becomes the Lyapunov ex-
ponent well known for the original Kuramoto-Sivashinsky
model. This means the stationary solution is linear unstable
at wave numbers −1� l�1 while it is linearly stable other-
wise. In the case of ��0, the propagation delay changes the
Lyapunov exponent and may destabilize the system. It turns
out that there is a critical propagation delay �th=1/� and a
corresponding critical propagation speed cth=��. For small
propagation delays ���th, the Lyapunov exponents are
modified but the system stability is retained �see Fig. 5�. In
contrast large propagation delays ���th lead to a sign inver-
sion of the Lyapunov exponent for −lc� l� lc with
lc
2=1−1/��. Figure 6 summarizes the stability conditions in

a diagram. However �→�th yields �→� for l→ lc and thus
does not satisfy the previous condition ����2�0.

Finally, Eq. �19� may be interpreted as if it originates
from the PDE

�V�x,t�
�t

−
��

c

1 + 4

�2

�x2� �V�x,t�
�t

= − �V −
�2

�x2V�x,t�

−
�4

�x4V�x,t� − V
�V

�x
. �20�

This equation represents an extension of the Kuramoto-
Sivashinsky equation now involving large propagation
speeds c. We observe that c→� yields the original
Kuramoto-Sivashinsky equation, while the finite propagation
speed leads to the additional second term on the left-hand
side.

V. CONCLUSION

The present work has introduced a nonlocal integral-
differential equation model which generalizes three impor-
tant partial differential equations. Moreover, we have shown
how to consider large propagation speeds in these models
and have quantified the propagation delay as the fraction of
spatial interaction range and propagation speed. The subse-
quent linear stability analysis turns out to be dependent on

FIG. 5. The Lyapunov exponent of the Kuramoto-Sivashinsky
equation subject to the scaled wave number l. The different line
styles encode the different propagation delays �=0 �dotted line�, 2.0
�dashed line�, and 2.499 �solid line�. �th=2.5.

FIG. 6. Illustrated stability diagram of the extended Kuramoto-
Sivashinsky equation subject. The center stability region does not
exceed the interval �−0.5,0.5� on the horizontal axis.
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this quantity and reveals critical propagation delays and cor-
responding propagation speeds. We find that large propaga-
tion speeds slow down the activity spread in diffusion sys-
tems and thus allows for the explanation of non-Fourier
behavior in nonhomogeneous systems. Further finite propa-
gation speeds may destabilize the dynamics of the Swift-
Hohenberg equation in the stable regime of the original
equation, while it may stabilize an occurring Turing instabil-
ity. Finally, finite propagation speeds may stabilize the dy-
namics of the Kuramoto-Sivashinsky equation. For all three

models partial differential equations have been formulated
which incorporate the propagation delay effects. We are con-
vinced that propagation delays play an important role in me-
dia showing ultrafast phenomena and that the obtained re-
sults will allow for their modeling.
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